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Thermoplastic nanocomposites with magnetic nanoparticles for
bonding and debonding on demand applications by local induction

heating
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Abstract

In this work the heating capacity of thermoplastic (TP) nanocomposite with magnetic nanoparticles (MNPs) as a function of time in a radiofrequency (RF) generator with a
solenoid colil type is studied, varying the working parameters (i.e., maximum power, frequency, time) [1]. Exposure of nhanocomposites to magnetic field results in temperature
Increase proportional to the MNPs concentration as a function of exposure time in magnetic field. High temperature increase, thus high heat capacity, cause melting of

~

J

/ Motivation \

Induction heating is a convenient and flexible method to deliver high-strength
magnetic fields to ferromagnetic nanoparticles, which act as susceptors, generating
heat in nanocomposite materials by hysteresis [2]. Taking advantage of the induction
heating mechanism, nanocomposite materials embedded with magnetic
nanoparticles (MNPs) constitute promising materials for adhesive joining systems,
enabling reversible joining procedures, providing easy-to-disassembly operations by

iInduction disassembly [3]. /
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Nanocomposite preparation

Twin screw extrusion system

* Nano-compounding and preparation of masterbatch (10% wt. MNPS)
« Dilutions to the desired concentration (2.5, 5, 7.5, 10 % wt. MNPS)

« Filament production with acceptable diameter of 1.75 £ 0.05 mm .

concentration of MNPs
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Fig 1. (a) Pilot line for nanocomposite filament development, (b) extrusion nozzle and filament roller and (c)
filaments of PP with MNPs (0, 2.5, 5, 7.5, 10 % wt.).

Table 1. Extrusion process parameters

TP Barrel Die Screw speed
material temperature temperature (rpm)
PP 200 400

180-195

PA12 180-220 225 400
TPU 195-205 210 350
PEKK 300-310 320 400

Induction heating set up
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Fig 2. Induction heating equipment: (a) RF generator, (b)
solenoid coil (including a sample inside), and (c) set up of
RF generator, coil, thermo-camera and monitoring software.

> RF Generator TruHeat HF 5010 (max Power: 10 kW, max Current: 35 A, Input
Voltage: 600 V)

> The maximum permissible RF current depends on the respective operating
frequency.

> The permissible operating parameters of the currently used capacitors in the
series oscillator circuit and available coil: 350 kHz, 450 kHz and 575 kHz

Inductor coil: solenoid geometry, height = 8.5 cm and inner diameter = 4.5 cm
Thermo-camera: Flir E5 (maximum T = 250°C) and Flir C5 (maximum T = 400°C)
Monitoring software Flir Tools+
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Bonding and debonding experiments
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Heating capacity study
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> Heating capacity of susceptors evaluated
as a function of operating frequency

> Selection of the optimum conditions:
575 kHz and 6 kW power
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Fig 3. Heating capacity of nanocomposite PP specimens
as a function of exposure time in magnetic field of 575,
450 & 325 kHz operating frequency and power 6 kW.
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Fig 4. Heating capacity of nanocomposite (a) TPU (b) PA12 (c) PEKK specimens as a function of exposure time in
magnetic field in the optimum conditions (575 kHz, 6 kW).

> Heating capacity observed in all polymer matrices embedded with MNPs
> Low concentration of MNPs requires longer time for temperature increase

> Different required time for temperature increase as a function of polymer type, MNPs
concentration, operating frequency, and power
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> Higher heating capacity in nanocomposites is achieved with higher concentration of
MNPs, exposing specimens in a magnetic field of 585 kHz frequency.

» Nanocomposites of PP, TPU, and PA12 with 10% wt. MNPs reached their melting
temperature in less than 2 minutes of exposure.

> Developing innovative TP nanocomposites will allow a faster and leaner integration

and repair of 3D printed structures, compared to thermoset repair processes,

promoting advanced applications in many fields of Nanotechnology. /

CONCLUSIONS
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