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Abstract: The transformation of the aeronautical industry towards sustainable and cost-effective 11 

manufacturing is essential for enhancing aircraft performance, while reducing environmental 12 

impacts and production costs. This study integrates Life Cycle Assessment (LCA), Life Cycle 13 

Costing (LCC), and machine learning to enhance sustainable design in aeronautics. A Multi- 14 

disciplinary Optimization (MDO) approach was applied to a composite airframe panel, revealing 15 

that increased panel mass elevates Climate Change (CC) and Resource Use (fossils) impacts, 16 

largely due to carbon fiber and energy-intensive manufacturing. A Random Forest model 17 

predicted LCA/LCC outcomes, facilitating real-time, sustainability-driven decisions. Optimization 18 

reduced environmental impacts by 15%. Recommendations include bio-based composites and 19 

renewable energy use to further lower environmental costs. 20 
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 22 

1. Introduction 23 

The aeronautical industry faces a need for transformation, especially in the 24 
adoption of advanced composite materials. This shift is driven by the goals of enhancing 25 
aircraft performance, increasing productivity, and reducing manufacturing costs with 26 

more sustainable materials and innovative technologies. A transition to composite 27 
materials promises significant benefits, including cost savings, reduced weight, and 28 

lower fuel consumption, which together contribute to more efficient and 29 
environmentally friendly aircraft fabrication. Although thermoset polymer carbon fibre 30 
composites are widely used in the industry, recent trends indicate that thermoplastic 31 

composites are becoming popular due to their increased usage. Research indicates that 32 
employing thermoplastic composites resulted in a 10% reduction in weight in 33 

comparison to thermoset materials [1]. Thermoplastic composites are also excellent 34 
sustainable materials because they can be recycled and repaired, and they have short 35 
processing times. 36 

One initiative addressing this need is the EC-funded project DOMMINIO, which 37 
seeks to integrate Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) with 38 

artificial intelligence (AI) and multifunctional design variables for aircraft parts. 39 
DOMMINIO aims to support sustainable decision-making by linking design variables to 40 
sustainability indicators, providing an evidence-based approach to developing machine 41 

learning algorithms and predictive analytics for engineering applications. Specifically, 42 
the project’s approach consists of: (i) conducting correlation studies between 43 

sustainability indicators and design variables to develop robust machine learning 44 
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models, and (ii) utilizing predictive analytics to enable engineers and designers to make 1 
sustainability-oriented decisions throughout product development, as well as in 2 
maintenance, repair, overhaul (MRO), and end-of-life (EOL) management. 3 

To illustrate the DOMMINIO framework in practice, a case study on a 4 
multifunctional composite stiffened airframe access panel is being conducted. This panel 5 

is assessed for environmental and cost implications across its life cycle. The panel 6 
consists of thermoplastic composite and thermoplastic filaments enhanced with 7 
nanoengineered materials, including magnetic nanoparticles for disassembly 8 

functionalities and continuous carbon nanotube fibers for heating and de-icing 9 
capabilities. Advanced manufacturing methods are employed in the panel’s production: 10 

Automated Fiber Placement (AFP) is used to fabricate the panel, while Fused Filament 11 
Fabrication (FFF) is applied to print the gyroid stiffeners, reinforced with a top layer of 12 
AFP thermoplastic composite. 13 

In sum, DOMMINIO seeks to set a new frame in sustainable aeronautical 14 
manufacturing by integrating advanced materials, nanoengineering, and AI-driven 15 

decision support. This holistic approach has the potential to redefine material selection 16 
and manufacturing processes in the aeronautical industry, supporting the dual goals of 17 
economic efficiency and environmental responsibility. 18 

2. Methodologies 19 

2.1. Life Cycle Analysis and Life Cycle Costing  20 

Life cycle assessment is a standardized methodology by ISO14040/44:2006, widely 21 
applied to assess the potential environmental impacts of a product through the entire 22 
life cycle, from raw materials to manufacture, operation and end-of-life phase. An LCC 23 

study should include the cash flows for all life cycle stages (LCSs) starting from the 24 
planning and designing stage, continuing with the materials or components suppliers, 25 

product manufacturing, use stage and finally, the End-of-Life (EoL) stage [2].  26 
For life cycle cost (LCC) methodology, the only standard that currently exists is the 27 

ISO 15686-5:2017, providing specifications and instructions for carrying out LCC 28 

analyses of building structures and their components.   29 
In this study, the LCC is implemented in parallel with the LCA at the same system 30 

boundaries and its framework is based on the four LCA phases: i) goal and scope 31 
definition, ii) Life Cycle Inventory (LCI), iii) Life Cycle Cost Assessment (LCCA) and iv) 32 
interpretation of the results [3].   33 

The goal of the life cycle environmental and cost assessment is to quantify the 34 
potential environmental and cost impacts of the initial design of multi-functional 35 

thermoplastic composite airframe parts developed in DOMMINIO project, to be used as 36 
alternative solution in conventional aircraft manufacture, and evaluate their 37 
sustainability towards recyclability, repairing and re-use.  38 

 39 

2.2. Dynamic Life Cycle Analysis and Life Cycle Costing through Machine Learning 40 

To convert Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) from static 41 
to dynamic analyses, a machine learning (ML) toolkit was employed. The machine 42 
learning models were trained on simulations outputs to predict LCA and LCC outcomes 43 

under varying conditions. This dynamic approach enables continuous updates to 44 
predictions as new data becomes available, allowing the optimization framework to 45 

adapt in real-time. Consequently, environmental and cost impacts are more accurately 46 
represented throughout the design process, thus supporting sustainable decision- 47 
making. 48 

 49 

2.2. Generation of Environmental and Cost Indicators 50 
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The LCA and LCC assessments were performed first on the initial design of the 1 
demonstrator part to produce a range of environmental and cost indicators essential for 2 
evaluating afterwards the sustainability and economic aspects of different design 3 

options. Initially, correlations between design parameters and LCA/LCC input 4 
parameters were identified, as detailed in Table 1. The output design parameters have 5 

been correlated to LCA input variables. The LCA study of the initial design, has 6 
revealed the key impact indicators that mainly include Climate Change (CC) and 7 
Resource Use of fossils (RUf), followed by Ionizing Radiation (IR), Acidification (AC), 8 

and Eutrophication (EF). These 5 impact indicators contribute at least 80% to the total 9 
single score. Concurrently, the design parameters have also been linked to LCC inputs 10 

and initial analysis produced indicators such as Cost of Materials (CoM), Cost of 11 
Utilities (CoU), and Cost of Waste (CoW) and Net Present Value (NPV). 12 

 13 

Design parameters LCA/LCC input parameters 

Panel thickness: The structural model 

would provide a panel of variable 

thickness. 

Panel Input: the panel thickness as variable 

would correspond to different mass, 

manufacture energy, waste and total 

manufacture cost. 

Stiffener dimensions: these are related to 

the occupied volume of the gyroids filling 

the stiffener.  

Gyroids Input: stiffener dimensions would 

affect the material quantity (M2), manufacture 

energy, the amount of waste generated and 

total manufacture cost. 

SHM Sensor Network: the total length of 

sensor to meet probability of detection 

requirements 

cCNT filament: the total length of the cCNT 

filament as a variable will provide different 

mass, energy and cost input values. 

Magnetic Nano-particle layers: the area 

of interface between stiffeners and panel 

MNPs input: the area will correspond to TP 

resin with embedded magnetic nanoparticles 

different mass and cost input data. 

Heating elements: Total length around 

periphery of panel to meet de-icing 

requirements 

cCNT filament: the total length of the cCNT 

filament as a variable will provide different 

mass, energy and cost input values. 
Table 1: Correlation of design parameters and LCA/LCC input variables 14 

The optimized dataset comprised three key panel components: composite bottom 15 

panel mass (M1), top composite reinforcement mass (M2) and the three stiffeners mass 16 
(M3). Each component has associated LCA and LCC indicators, creating a representative 17 
sample of the design configuration. This dataset captures the interdependencies between 18 

panel masses and their environmental and cost impacts, forming the foundation for 19 
predictive modeling. 20 

2.3. Machine Learning Model Development and Training 21 

To support decision-making, a machine learning model was developed and trained 22 

on this dataset to predict LCA and LCC identified key indicators based on input values 23 
for the three masses (M1, M2, M3). Utilizing machine learning in this context allows for 24 

rapid evaluation of environmental and cost impacts, reducing the need for repetitive, 25 
time-consuming recalculations and enabling efficient exploration of the design space. 26 

For this project, the Random Forest algorithm was selected. This robust tree-based 27 

method is well-suited for moderate-sized datasets, which are common in specialized 28 
engineering applications. The algorithm’s ability to handle a range of input features and 29 

resistance to overfitting make it ideal for predicting complex environmental and cost 30 
indicators based on varying design parameters. 31 

Following standard machine learning practices, the data was divided into a training 32 

set to teach the model and a test set to validate its performance on unseen data. This 33 
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separation ensures the model's reliability and generalizability beyond the cases it was 1 
trained on. 2 

2.4. Model Performance Evaluation 3 

The performance of the Random Forest model was assessed using Mean Squared 4 

Error (MSE) and the Coefficient of Determination (R²). MSE measures the average 5 
squared prediction error, with a lower MSE indicating higher accuracy. R² reflects how 6 
well the model’s predictions correspond to actual data, with values closer to 1 indicating 7 

that the model effectively captures the variance in the output data. 8 
The model demonstrated low MSE values and high R² scores on both the training 9 

and test sets, indicating excellent predictive accuracy and strong generalization to new 10 
data. These results suggest that the Random Forest model effectively learns the 11 
relationships between panel masses and LCA/LCC indicators without overfitting. 12 

3. Model Integration with the Optimization Framework 13 

To integrate the machine learning model with the optimization framework, the 14 
trained Random Forest model was serialized in .joblib format, preserving its structure 15 

and parameters for consistent use without retraining. This serialized model significantly 16 
reduces computational demands and ensures efficient deployment within the 17 
optimization process. 18 

Additionally, a Python script was developed to facilitate model interactions. This 19 
script searches for an input file, "input.csv," containing panel mass values (M1, M2, M3) 20 

generated by optimization procedure, formats the data for the model, and predicts 21 
environmental and cost indicators. These predictions are then saved in an output file, 22 
"output.csv," which includes indicators such as Climate Change, Rerource Use, Ionising 23 

Radiation, Acidification, Eutrophication and Net Present Value. 24 
For ease of use, the Python script was packaged as an executable, allowing it to run 25 

on any system without Python or additional dependencies. This streamlined setup 26 
provides stakeholders with a simple process to generate updated predictions by 27 
modifying the "input.csv" file, thus facilitating iterative design and optimization within 28 

the optimization framework that searches for various design solutions of the component 29 
under study. 30 

 31 

Figure 1: Visualization of executable flow of LCA/LCC module in Python script. 32 

.3. Results 33 

3.1. Generation of Pareto-Optimal Data 34 
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In the case study, a comprehensive set of Pareto-optimal data was generated to 1 
represent three key masses in the prototype: panel (M1), top reinforcement (M2), and 2 
stiffeners (M3). This dataset was derived through a Multi-disciplinary Optimization 3 

(MDO) process that considered multiple objective functions and constraints to identify 4 
the best trade-offs among conflicting objectives, such as weight and strength. An 5 

analytical summary of the MDO data is presented in Table 2, providing key statistical 6 
insights, including mean, median, standard deviation, and range. 7 

 8 

 M1: Panel Mass M2: Stiffener Mass M3: Gyroid Mass  

Count 614 614 614 

Mean 8.24 0.21 2.38 

Std 0.76 0.01 0.23 

Min 6.63 0.16 1.83 

25% 7.68 0.20 2.20 

50% 8.08 0.222 2.38 

75% 8.83 0.228 2.55 

Max 9.61 0.23 2.91 
Table 2: MDO data description. 9 

3.2. Life Cycle Impact Assessment (LCIA) 10 

The LCIA focused on the manufacture phase based on the design optimisation data, 11 
with a specific emphasis on single score provided by the five key impact indicators: 12 

Climate Change (CC), Resource Use (fossils) (RUf), Acidification (AC), Eutrophication 13 
(EF), and Ionizing Radiation (IR). Key findings for each impact category are summarized 14 

as follows: 15 
Climate Change (CC) and Resource Use (RUf): The LCA analysis for the studied 16 

case revealed that both indicators increase with higher panel mass (M1). At elevated 17 

panel mass values, the single score for CC is offset by a lower gyroids mass (M3), while 18 
variations in stiffener top reinforcement mass (M2) do not significantly affect these 19 

indicators. A similar pattern was observed in the RUf indicator, with higher panel mass 20 
correlating with higher single score. This is attributed to the high impact contribution of 21 

materials, mainly from the energy-intensive production of carbon fibre for panel mass 22 
(M1) and the high manufacture energy per kg output attributed to the FFF technology 23 
for fabricating the stiffeners at gyroid’s structure (M3), deriving from fossil-based 24 

electricity. 25 
Acidification (AC): Acidification was observed to increase primarily with the 3D 26 

printed stiffeners mass (M3). This rise is largely due to the energy-intensive 3D filament 27 
printing of the stiffeners ‘gyroids’ structure and the energy source mix of electricity. 28 

 Eutrophication impacts were more sensitive to increases in panel and top 29 

reinforcement masses (M1 and M2), while variations in gyroids mass (M3) had minimal 30 
influence. The eutrophication process, driven by excess nutrients, has significant adverse 31 

effects on aquatic ecosystems and, indirectly, on human health. 32 
Ionizing Radiation (IR): Analysis of the (IR) indicator suggested that increased 33 

panel mass values have a considerable effect on this score. Even at low gyroid masses 34 

(M3), high panel mass values influenced IR scores significantly. Higher values of 35 
gyroids mass combined with lower panel mass also showed a notable effect, likely due 36 

to the energy requirements of these materials.  37 

3.3. Life Cycle Cost Analysis (LCC) 38 

The LCC analysis, linked to the MDO design optimization, examined all possible 39 
cost categories such as: Cost of Materials (CoM), Cost of Utilities (CoU), and Cost of 40 

Waste (CoW). Due to the fact that some costs occur in different periods, Life – Cycle Cost 41 
was expressed as the NPV (Net Present Value) of all costs. Findings include: 42 
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Cost of Materials (CoM): The cost of raw materials increased with higher panel 1 
(M1) and gyroids (M3) masses. The materials used, including thermoplastic composite 2 
tapes for AFP and polyether-ketone-ketone (PEKK) resin for FFF applications, were 3 

identified as particularly costly for aviation applications. 4 
Cost of Utilities (CoU): Utility costs were observed to increase with larger quantities 5 

of gyroids mass (M3), highlighting the energy demands of this component's production. 6 
Cost of Waste (CoW): Waste treatment costs followed a similar trend as material 7 

costs, with higher expenditures linked to the thermoplastic prepreg tape used in AFP 8 

manufacturing for the bottom panel and stiffeners' top reinforcement. Since FFF 9 
technology is regarded as a low-waste process, the waste costs are primarily due to AFP- 10 

related scrap. 11 
Estimations on other cost categories such as Cost of Externalities (CoE), Cost of 12 

Depreciation (CoD) and Cost of operating Labour (CoL) had a minor impact or variation 13 

regarding mass. 14 
 15 

3.4. Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) Integration with 16 

MDO Data 17 

The LCA/LCC analysis on the complete life cycle was developed into a module that 18 
integrates MDO optimization data, extending across the operational/use and end-of-life 19 

phases. Multifunctional elements embedded in the system were also incorporated. The 20 
resulting visual graphs illustrate the complete LCA (focusing on five impact indicators 21 

per life cycle stage) and the net LCC value post-MDO integration. 22 
Climate Change Sensitivity to Mass Variables: The climate change single score was 23 

notably affected by the mass of both the bottom laminate and the gyroids (M3). The 24 

greater the UD tape mass in the bottom laminate, the higher the climate change score 25 
across the three life cycle stages. 26 

Reduction of Environmental Impact through Optimization: During the LCA/LCC 27 
integration with MDO optimization, the climate change and resource use (fossils) 28 
indicators were highly sensitive to variations in bottom panel mass. The AFP bottom 29 

panel was identified as the primary environmental hotspot. As bottom laminate mass 30 
decreased, overall environmental impacts were reduced. Under optimized conditions, 31 

the single score of Climate Change ranges over 15% from the maximum to minimum 32 
value, while this range in the LCC-NPV is 1.3%. 33 

 34 

Figure 2: MDO design optimisation data and Single score of Climate Change (normalised) 35 
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 1 

Figure 3: MDO design optimisation data and normalised LCC-Net Present Value 2 

3.5. Future Recommendations for Environmental Impact Reduction 3 

To further minimize environmental impacts, potential future approaches include 4 

increasing the bio-based content of composite materials and adopting renewable energy 5 
sources for electricity consumption in FFF technology. These recommendations could 6 

reduce fossil-based energy consumption and support long-term sustainability goals. 7 

4. Conclusions 8 

This study successfully integrated Life Cycle Assessment (LCA), Life Cycle Costing 9 
(LCC), and machine learning-driven Multi-disciplinary Optimization (MDO) to advance 10 

sustainable design in the aeronautical industry. An LCA and LCC analysis was first 11 
conducted for the initial design and then expanded across optimized mass 12 

configurations, providing insights into how different mass distributions impact 13 
environmental and cost indicators. A machine learning model, developed to predict 14 
these indicators, was packaged into an executable format, enabling streamlined 15 

application across varied design inputs. This approach reduced environmental impacts 16 
by 15%, showcasing the potential of integrating AI with lifecycle analyses. This 17 

framework holds promise for broader applications across the industry. 18 
 19 
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