

Multiscale Modeling of Composites: Towards Al assisted virtual testing of composites

Moisés Zarzoso^{1,2}, Carlos González^{1,2}, Juan José Vilatela², Pablo Romero³

¹IMDEA Materials Institute, c/ Eric Kandel 2, 28906 Getafe, Madrid, Spain ²E.T.S. Ingenieros de Caminos, Polytechnic University of Madrid, 28040, Madrid, Spain ³AIMEN, Polígono Industrial de Cataboi, 36418, O Porriño, Pontevedra, Spain

VIRTUAL TESTING

- Physically-based
- Time consuming
- On-the-fly X

high

Use

of scientific knowledge

continuum
solid & fluid

mechanics, chemistry charge spirit stranged at a solid spirit stranged at a solid spirit stranged at a solid spirit spiri

deep learning & big data

SIMULATION GUIDED AI

- Trustworthy Al (physicallyconstrained)
- Reduce of tests for data-sets

ARTIFICIAL INTELLIGENCE

- Hidden patterns ✓
- Black-box X
- Experimental trials are expensive

Fiber-reinforced composites present a simple -but efficient- hierarchical structure that leads to tough materials from brittle constituents.

> fiber diameter dominant ply thickness laminate thickness length scale 150-300 μm $\approx 10 \, \mu \text{m}$ 2-20 mm crack bridging fiber pull-out matrix shear yielding buckling fiber kinking interface decohesion crushing interply decohesion

Understanding the fracture behavior requires a multiscale approach for characterization and modeling to account for the interaction between length scales.

Intralaminar failure (fiber failure, matrix cracking, interface decohesion)

Interlaminar failure (delamination)

Damage triggered at the microscale

Carbon/Epoxy Transversal Compression [0]₈ SEM In Situ Test

Plastic shear banding and failure

Fiber debonding + matrix cracking

Rodriguez, M, Sadaba, S, Munoz, R, Canal, L P, Multiscale modeling of composite materials: a roadmap towards virtual testing, Advanced materials, 23, 5130-47, 2011

- Periodic boundary conditions are imposed between opposite faces of the RVE (jig-saw puzzle)

§Fibers behave as elastic solids: transverse isotropic (carbon fibers)

and isotropic (glass fibers)

FIBER MODEL

INTERFACE MODEL

• Onset of damage
$$max\left\{\frac{\langle t_n \rangle, t_s}{N, S}\right\} = 1$$

Traction-separation law

$$t_n = (1-d)K\delta_n \quad \text{if} \quad \delta_n > 0$$

$$t_n = K\delta_n \quad \text{if} \quad \delta_n \le 0$$

$$t_s = (1-d)K\delta_s \quad \text{if} \quad \delta_n \le 0$$

Evolution of the damage parameter

$$d = \frac{\bar{\delta}^f (\bar{\delta}^{max} - \bar{\delta}^0)}{\bar{\delta}^{max} (\bar{\delta}^f - \bar{\delta}^0)}$$

Interface fracture energy $G_F = rac{1}{2} ar{t}^0 ar{\delta}^f$

The epoxy matrix followed a modification of Drucker-Prager plasticity (Lubliner) to account for brittle fracture in tension and shear yielding

MATRIX MODEL

- $\phi(I_1, J_2, \sigma_I, \beta, \alpha) = \frac{1}{1 \alpha} \left(\sqrt{\frac{3J_2}{2}} + \frac{I_1}{3} \alpha + \beta \langle \sigma_I \rangle \right) \sigma_m^{yc} = 0$
 - Pressure sensitivity
 - Compression yield stress
 - Tension cut-off

$$\beta = \frac{\sigma_m^{yc}}{\sigma_m^{yt}} (1 - \alpha) - (1 + \alpha)$$

• Fracture energy for softening

- $_{m}^{yc}$ Hardness H is dependent on the yield strength σ_{m}^{yc}

- **Properties** Prager solids σ_m^{yc} and α

M. Rodríguez, J. M. Molina-Aldareguía, C. González, J. LLorca. A methodology to measure the interface shear strength by means of the fiber push-in test. Composites and Technology, 72, 11924-1932, 2012.

THREE POINT BENDING

- TPB notched specimens
- $a_0/D \approx 0.5$ for stable crack growth
- On-line detailed inspection of failure micromechanisms

NOTCHED THREE POINT BENDING MODEL

Simulations were carried out with Abaqus/standard under plane strain conditions within the framework of an embedded cell model.

- Discretization was carried out with quadratic triangles (CPE6M)
- ⊌Interfaces were discretized with linear triangles (COH2D)

 ⊕The numerical model is able to reproduce accurately the macroscopic P- CMOD curves as well as the microscopic failure mechanisms.

Rodriguez, M, Sadaba, S, Munoz, R, Canal, L P, Multiscale modeling of composite materials: a roadmap towards virtual testing, Advanced materials, 23, 5130-47, 2011

MULTISCALE SIMULATION STRATEGY COMPUTATIONAL MESOMECHANICS

IN-PLANE SHEAR

WITH residual thermal stresses

OPEN-HOLE TENSION

OPEN-HOLE COMPRESSION

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101007022.

MULTISCALE SIMULATION STRATEGY COMPUTATIONAL MESOMECHANICS

AS4/8552

Stiff

Medium - shear dominated

Soft

\mathbf{C}	_	τı
S	O	π

Laminate	Test strength (MPa)	Predicted strength (MPa)	Error (%)
In-Plane Shear	97.5	94	-3.6
Plain Tension - QI	663	673	1.5
Plain Compression – QI	540	570	5.6
Plain Tension - [50/40/10]	1076	1040	-3.3
Plain Compression - [50/40/10]	831	757	-8.9
Plain Tension – [10/80/10]	436	458	4.9
Plain Compression – [10/80/10]	391	404	3.4
Plain Tension - [30/40/30]	761	770	1.1
Plain Compression – [30/40/30]	540	603	11.5
Open-Hole Tension - QI	371	401	7.9
Open-Hole Compression - QI	304	306	0.6
Open-Hole Tension - [30/40/30]	446	402	-9.8
Open-Hole Compression - [30/40/30]	311	299	-3.9

VIRTUAL TESTING

- Physically-based
- Time consuming
- On-the-fly X

high

of scientific knowledge

Use

continuum solid & fluid mechanics, chemisti Hybrid methods dided simulation duided simulation duidece

deep learning & big data

SIMULATION GUIDED AI

- Trustworthy Al (physicallyconstrained)
- Reduce of tests for data-sets

ARTIFICIAL INTELLIGENCE

- Hidden patterns √
- Black-box X
- Experimental trials are expensive

advantages

- ⊌Influence of the lay-up, stacking sequence, etc.

disadvantages

- •Requires expertise on modelling

Strain history $\begin{array}{c} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \varepsilon_{23} \\ \varepsilon_{13} \\ \varepsilon_{13} \\ \varepsilon_{12} \end{array}$

Forward Mechanical Problem Micro & Mesomechanics

no race-tracking

TRAINING THE NETWORK

- 2000 OpenFoam simulations as data-sets
- Deep Residual Learning for Image Recognition ResNet*
- Classification optimization based on CE loss (cross-entropy)
- Regression optimization based on MSE loss (mean square error)

no RT

type 3 | nion's Horizon 2020 | ment No 101007022.

SIM-EXP OVERLAID VIDEOS

type 4

type 1

Thank you for your attention

Carlos González Structural Composites Team Leader

carlosdaniel.gonzalez@imdea.org

Pablo Romero Rodríguez

R&D Programme Manager | DOMMINIO Project Coordinator

+34 672 62 35 49 | pablo.rodriguez@aimen.es

